| Skip to main content | Skip to navigation |

Beyond PageRank: Machine Learning for Static Ranking

  • Matthew Richardson, Microsoft Research, USA
  • Amit Prakash, MSN, USA
  • Eric Brill, Microsoft Research, USA

Full text:

Track: Search

Slot: 16:00-17:30, Friday 26th May

Since the publication of Brin and Page's paper on PageRank, many in the Web community have depended on PageRank for the static (query-independent) ordering of Web pages. We show that we can significantly outperform PageRank using features that are independent of the link structure of the Web. We gain a further boost in accuracy by using data on the frequency at which users visit Web pages. We use RankNet, a ranking machine learning algorithm, to combine these and other static features based on anchor text and domain characteristics. The resulting model achieves a static ranking pairwise accuracy of 67.3% (vs. 56.7% for PageRank or 50% for random).

Organised by

ECS Logo

in association with

BCS Logo ACM Logo

Platinum Sponsors

Sponsor of The CIO Dinner

Valid XHTML 1.0! IFIP logo WWW Conference Committee logo Web Consortium logo Valid CSS!